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The main goal of this paper is to assess the limits of validity, in the regime of low concentration and strong
Coulomb couplingshigh molecular chargesd, of a simple perturbative approximation to the radial distribution
functionssRDF’sd, based upon a low-density expansion of the potential of mean force and proposed to describe
protein-protein interactions in a recent small-angle-scatteringsSASd experimental study. A highly simplified
Yukawasscreened Coulombd model of monomers and dimers of a charged globular proteinsb-lactoglobulind in
solution is considered. We test the accuracy of the RDF approximation, as a necessary complementary part of
the previous experimental investigation, by comparison with the fluid structure predicted by approximate
integral equations and exact Monte CarlosMCd simulations. In the MC calculations, an Ewald construction for
Yukawa potentials has been used to take into account the long-range part of the interactions in the weakly
screened cases. Our results confirm that the perturbative first-order approximation is valid for this system even
at strong Coulomb coupling, provided that the screening is not too weaksi.e., for Debye length smaller than
monomer radiusd. A comparison of the MC results with integral equation calculations shows that both the
hypernetted-chainsHNCd and Percus-Yevick closures have a satisfactory behavior under these regimes, with
the HNC being superior throughout. The relevance of our findings for interpreting SAS results is also
discussed.
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I. INTRODUCTION

In spite of the large effort devoted in the last decades, a
clear understanding of the interactions of macromolecules in
solution is still far from being achievedf1,2g. In particular,
this is true in the case of globular proteins, which share with
colloidal systems a number of common propertiesf3g.

From the experimental point of view, there exist several
biophysical techniques for obtaining quantitative data on
protein-protein interactions under physiologically relevant
conditions. Small-angle scatteringsSASd, for instance, is cur-
rently believed to provide very reliable information, under
very different experimental conditionsspH, ionic strength,
temperature, etc.d. If the particle form factors are known,
dividing the SAS intensity by the average form factor yields
the experimental average structure factor, which is related to
the radial distribution functionssRDFd gijsrd si and j are
species indexesd. A recent experimentf4g reported small-
angle x-ray scatteringsSAXSd measurements on structural
properties of a particular globular protein, the
b-lactoglobulinsbLGd, in acidic solutionsspH=2.3d, at sev-

eral values of ionic strength in the range 7–507 mM. For
this protein there is a clear evidence of a monomer-dimer
equilibrium affected by the ionic strength of the solutionf5g,
and the authors of Ref.f4g were able to achieve a good fit of
the experimental data by using a highly simplified “two-
component macroion model”smimicking monomers and
dimers ofbLGd, with effective forces represented by hard-
spheresHSd terms plus the repulsive Yukawasscreened Cou-
lombd part of the well-known Derjaguin-Landau-Vervey-
OverbeeksDLVOd potential f6g. One important novelty of
that study, compared with previous ones, is the proposal of a
relatively simple, improved approximation to the RDF’s,
suitable for best-fit programs and not restricted to the par-
ticular model but equally well applicable to different spheri-
cally symmetric potentials.

From the theoretical point of view, information on inter-
molecular forces can be extracted from the experimental av-
erage structure factor by comparison with a theoretical one,
whose calculation requires the choice not only of an interac-
tion model but also of a recipe for deriving the RDF’s from
the intermolecular potentials. At present, the most accurate
techniques for evaluating RDF’s are the “exact” computer
simulations—Monte CarlosMCd and molecular dynamics
sMDd—and the “approximate” integral equationssIE’sd from
the statistical mechanical theory of classical fluidsf7g. Un-
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fortunately, such complex methods can hardly be included in
a best-fit program for analyzing experimental data. In fact,
MC or MD simulations require long computational times and
become difficult in regimes characteristic of globular pro-
teins in solutionsi.e., low concentration, high charges, asym-
metry in size and charge among the components of the mix-
tured. On the other hand, only for a very limited number of
simple potentials and within an even more limited number of
approximate “closures” do IE’s of liquid theory admit ana-
lytical solutions, providing closed-form expressions to be in-
serted into best-fit codesf8g. In all other cases, an iterative
numerical procedure is necessary, and this poses a major
drawback to any fitting scheme. Moreover, numerical solu-
tion of the IE closures tends to become unstable or does not
converge in the region of our interest.

In order to simplify the problem, most analyses of SAS
data for highly dilute solutions employ the crude approxima-
tion of neglecting all intermolecular forces, assuming either
large interparticle separations or weak interactions. In this
case,gijsrd=1, the average structure factor equals unity and
the SAS intensity depends only upon the average form fac-
tor. A common first improvement over the previous choice
then corresponds to approximating the RDF’s with their
zero-density limit, given by the Boltzmann factor—i.e.,
gijsrd=expf−bfi jsrdg, wherefi jsrd is the pair potential and
b=skBTd−1 the inverse of the thermal energysabsolute tem-
perature multiplied by Boltzmann’s constantd. However, this
zero-density approximation becomes insufficient at moderate
concentrations or in regimes of colloidal or protein solutions
when electrostatic interactions are strong—i.e., at low ionic
strength.

Motivated by this scenario, Ref.f4g proposed a more ac-
curate representation ofgijsrd that takes into account, accord-
ing to a perturbative scheme, terms up to the first order in the
density expansion of the potential of mean force,Wijsrd
=−b−1 ln gijsrd f9g fnote that theWijsrd expansion should not
be confused with the RDF one, since these two expansions
differ even at the first order in densityg. While the satisfac-
tory best-fit results of Ref.f4g seem to indicate that a first-
order approximation toWijsrd sW1 approximationd is suffi-
ciently accurate for low concentrations such as the
experimental conditions under study, there is no way,a pri-
ori, to tell where this approximation breaks down, in the
absence of some “exact results” to compare with. On the
other hand, as the experimental conditions present in the
analysis of Ref.f4g are fairly typical in the context of pro-
teins in solution, we feel that it would be interesting to make
such a comparison. Thus the main subject of the present
paper, which complements the methodological part of the
work of Ref.f4g, is not the proposal of a new potential model
for bLG, but a test of the W1 approximation against more
accuratesMC and IEd structural results.

We perform MC simulations, at constant volume, tem-
perature, and total number of macroparticles, for thesame
HS-Yukawa-DLVO binary model, representing monomers
and dimers ofbLG, investigated in Ref.f4g. Various values
of the screening parameter are considered, and the MC re-
sults for gijsrd are compared with the corresponding ones
predicted by the aforesaid W1 approximation as well as by

some commonly used IE’s. In order to ensure always a good
accuracy, the MC calculations are carried out with and with-
out a suitable Ewald constructionf10–12g, which is expected
to play a major role in the cases of strong long-range inter-
actions sweak screeningd. Although the theoretical frame-
work for the Ewald construction, well known for unscreened
Coulomb forces, has already been extended to Yukawa inter-
actions in recent Refs.f11,12g, this work represents, to the
best of our knowledge, the first MC detailed analysis of its
implementation and performance for the repulsive Yukawa
casef13g.

Our calculations allow a rather precise determination of
the limits of validity for the W1 expansion. They also show
clearly the degree of reliability of some typical IE’s under
these frequently encountered, demanding, regimes. It is
worthwhile stressing that our results are in fact rather gen-
eral, as there exists a large variety of physical phenomena
which can be described by Yukawa potentialsf14g. The ex-
istence of “exact” computer simulations for a binary model
with these potentials would then prove to be useful within a
much more general context than the one treated here.

II. PROTEIN-PROTEIN INTERACTION POTENTIAL

When mesoscopicscolloidal or proteind particles with
ionizable surface groups are put into a microscopic polar
solventslike waterd, most of the charged surface groups dis-
sociate into the solvent and form microscopiccounterions,
usually carrying one or two elementary charges. Conse-
quently, the big particles acquire high charges of opposite
sign and are calledmacroionsor polyions. At equilibrium the
counterions are located around the charged macroions, form-
ing an electric double layer. The counterion distribution
tends to screen the repulsions between macroions, which
have charges of the same sign. The result is a screened Cou-
lomb sYukawad repulsion between macroions, which ensures
the stability of the solutionscharge stabilizationd with respect
to a possible irreversible flocculation. An important feature
of such repulsions is that they can be tuned by adding a
suitable amount of a simple electrolyte to the solution. In
fact, such a salt provides additional freemicroions scoions,
with same charge sign as the macroions, as well as other
counterionsd, which increase the degree of screening and
thus reduce the macroion-macroion repulsionsf15,17g.

A bLG solution thus consists of many components: two
different forms of macroionssprotein monomers and
dimersd, counterions, coions, and the solvent. At neutralpH,
the structure of thebLG protein is dimeric, while at acidic
pH sa condition more similar to the physiological oned a
partial dissociation into two monomers takes place. The
monomer-dimer equilibrium, which determines the molar
fractions of both macroion species, depends upon the ionic
strength of the solution. At low ionic strength, the screening
is weak and the electrostatic repulsions predominate over the
attractive forces responsible for the formation of dimers; as a
consequence, most of the macroions are monomers. On the
contrary, at high ionic strength a strong screening reduces the
monomer-monomer repulsions in such a way that a large
fraction of dimers can form.
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As in Ref. f4g, we represent such abLG multicomponent
solution at a highly simplified, “primitive model,” level of
description, using an effective “two-component macroion
model,” which takes into account only protein particles
f15–17g. In fact, the solvent is regarded as a uniform dielec-
tric continuum, all microions are treated as pointlike par-
ticles, and macroionssboth monomers and dimersd are as-
sumed to be charged hard spheres, with different diameters.
The presence of both solvent and microions appears only in
the macroion-macroioneffectivepotentials. In the spirit of
the DLVO theory f6g, we shall then describe the protein-
protein interactions with the simple effective potential

fi jsrd = fi j
HSsrd + fi j

Ysrd s1d

si , j =1,2, with species 1 and 2 corresponding to monomers
and dimers, respectivelyd. Here the hard-sphere term ac-
counts for excluded volume effects

fi j
HSsrd = H+ `, 0 , r , si j ,

0, r . si j ,
J s2d

wheresi j =ssi +s jd /2 is the distance of closest approach be-
tween two macroparticles of speciesi and j . On the other
hand, therenormalizedYukawa term

fi j
Ysrd =

ZiZje
2

«s1 + kDsi/2ds1 + kDs j/2d
expf− kDsr − si jdg

r

s3d

represents aneffectivescreened Coulomb repulsion between
two isolated macroionsin a sea of microionsand has the
same Yukawa form as in the Debye-Hückel theory of elec-
trolytes, but with coupling coefficients of DLVO typef6g.
Here,e is the elementary charge,« the dielectric constant of
the solvent,Zi the valency of speciesi, andkD the inverse
Debye screening length dueonly to microions, given by

kD =Î8pbe2

«

NA

1000
sIc + Isd. s4d

NA is the Avogadro number, andIc=s1/2dccZc
2 denotes the

ionic strength of the counterions originated from the ioniza-
tion of the protein macromoleculessthe molar concentration
cc of these counterions is related to the macroion concentra-
tions through the electroneutrality condition,ccuZcu=c1uZ1u
+c2uZ2ud, while Is=s1/2doici

microsZi
microd2 is the ionic strength

of all microions scations and anionsd generated by added
salts. Clearly,kD

−1 depends on temperature and represents an
indication of the range of the screened Coulomb interactions,
with kD→0 corresponding to pure Coulomb potentials,
whereaskD→` yields the opposite HS limit. While in real
experimentskD is fixed by the chemical conditions of the
solution snamely,Ic and Isd, in this work we shall not con-
sider Is as an independent variable, but in view of our meth-
odological purpose, we shall regardkDs1;z as an indepen-
dent reduced screening parameter.

A measure of the concentration of the two-macroion ef-
fective mixture will be given by the volume fraction

h =
p

6o
i=1

2

risi
3, s5d

where ri is the partial number density of theith macroion
speciesspointlike microions and solvent do not appear hered.
The definition of the model is then completed by providing
one of the two molar fractionsxi =ri /r si =1,2d, where r
=oiri is the total density.

Now, following partly Ref. f4g, we add three remarks
about some assumptions involved in the choice of the model
potential.

sid At first glance one might suspect that reducing dimers
to equivalent spheresswith a volume twice as large as the
monomerd; i.e., neglecting the asymmetry of the dimer mo-
lecular shape may seem a too drastic simplification. In order
to clarify this point, it is to be stressed that in Refs.f4,5g two
different levels of description for the dimer were used in the
two factors which contribute to the SAS intensity. The co-
herent scattering intensityIsqd was written as

Isqd ~ o
i,j

srir jd1/2Fi
*sqdFjsqdSijsqd, s6d

whereq is the magnitude of the scattering vector,Fisqd the
angular average of the form factor of speciesi, and the
Ashcroft-Langreth partial structure factorssfor spherically
symmetric intermolecular potentialsd are defined by

Sijsqd = di j + 4psrir jd1/2E
0

`

r2hijsrd
sinsqrd

qr
dr s7d

in terms of the three-dimensional Fourier transform of
hijsrd=gijsrd−1. A very accurate procedure was used to cal-
culate numerically both macroion form factorsF1sqd and
F2sqd from crystallographic data, taking into account, in par-
ticular, the exact elongated shape and structure of the
dimer—i.e., its distribution of scattering matterf4,5g. Thus
the approximation of spherical dimers was restricted only to
the calculation ofSijsqd, which is related, throughgijsrd, to
the intermolecular potentials. At low protein concentrations,
the choice of spherically symmetric hard-core potentials can
indeed be justified. As in such regimes the average distance
among particles is large, intermolecular forces are dominated
by the long-range electrostatic interactions, whereas the de-
tails of the short-range repulsionssi.e., the excluded volume
effectsd are irrelevant.

sii d Our potentials are purely repulsive. We have not in-
cluded the attractive van der Waals part of the DLVO poten-
tial for charged colloidal suspensionssthe so-called Hamaker
term f6gd, as it has already been shown to be unnecessary for
this system in previous workf4g. The basic reason is that van
der Waals attractions may be fully masked by the electro-
static repulsions when the latter are strong and are also neg-
ligible for moderately charged particles with a diameter
smaller then 50 nmf16g. Moreover, the Hamaker term di-
verges at contact, so that, to circumvent this singularity, the
inclusion of the attractive term would require the addition of
a Stern layer of counterionsswith finite sized condensed on
the macroion surfacef5g.
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siii d Given that the specific protein forms dimers, it ap-
pears that thebLG necessarily has a short-range monomer-
monomer attractionsrelated to the surface groupsd, which
causes the aggregation into dimers and determines the mono-
mer molar fractionx1. One expects this attractive termspos-
sibly including hydrogen bondingd to be rather complex and
non spherically symmetric. If such a contribution were
clearly understood and easily tractable, one could start from
a more fundamental viewpoint, choosing a model which con-
siders only monomers and includes the aforementioned at-
traction into their pair potential. One could then monitor the
dimerization fraction within thisone-componentsystem.
However, this analysis may be a project on its own right and
goes beyond the aims of the present study.

More simply, in order to avoid poorly known and angular-
dependent potentials, the authors of Refs.f4,5g adopted the
viewpoint of using abinary smonomer-dimerd rather than a
one-component model, and the required attraction was ac-
counted only indirectly, by using a chemical association
equilibrium to evaluatex1 f4,5g.

While the dependence ofx1 upon the added saltsi.e., upon
Isd must be taken into account in any best-fit analysis with
the binary modelf4,5g, in the present work, for the sake of
simplicity, we shall considerx1 as an independent parameter.
Most of our calculations will be performed at equal molar
fractionsx1=x2, but in the last part of the paper we shall also
address the effect of changing the molar fractions.

III. LOW-DENSITY EXPANSION OF THE MEAN-FORCE
POTENTIAL

As discussed in the Introduction, one of the most com-
monly used procedures to compute RDF’sgijsrd for a given
pair potential fi jsrd goes through the solution of the
Ornstein-ZernikesOZd IE’s from the liquid state theory,
within some approximate closure relation. This can typically
be done only numerically, with the exception of few simple
casessfor some potentials and peculiar closuresd, where the
solution can be worked out analyticallyf7g.

Note that, for HS-Yukawa potentials, the OZ equations do
admit analytical solutionf18–20g, within the so-called “mean
spherical approximation”sMSAd, to be discussed further be-
low. On the other hand, under the experimental regime which
we are interested inf4g—namely, low density and strong
electrostatic repulsionssweak screeningd—the MSA is well
known to display a serious drawback since RDF’s may as-
sume unphysical negative values close to contact distance
si j , for particlesi and j which repel each other. To overcome
this shortcoming for repulsive Yukawa models, it would be
possible to utilize an analytical “rescaled MSA”f16,21,22g
sthis possibility will not be investigated in the present paperd
or to resort to different closures.

In general, then, only numerical solutions are feasible,
and thus IE algorithms can hardly be included into best-fit
programs for the analysis of SAS results.

The use of analytical solutions or simple approximations
requiring only a minor computational effort is clearly much
more advantageous when fitting experimental data. This can
be done by resorting to the exact, albeit formal, relation

gijsrd = expf− bWijsrdg, s8d

− bWijsrd = − bfi jsrd + vi jsrd, s9d

whereWijsrd is the potential of mean force, which includes
the direct pair potentialfi jsrd as well as −b−1vi jsrd—i.e., the
indirect interaction betweeni and j due to their interactions
with all remaining macroparticles of the fluid. In the density
expansion ofWijsrd,

− bWijsrd = ln gijsrd = − bfi jsrd + vi j
s1dsrdr + vi j

s2dsrdr2 + . . . ,

s10d

theexactpower coefficientsvi j
skdsrd sk=1,2, . . .d can be com-

puted by using standard diagrammatic techniquesf9g, which
yield the results, in terms of multidimensional integrals of
products of Mayer functions,

f ijsrd = expf− bfi jsrdg − 1. s11d

In the zero-density limit,vi jsrd vanishes andgijsrd re-
duces to the Boltzmann factor—i.e.,

gijsrd = expf− bfi jsrdg asr → 0, s12d

which represents a zeroth-ordersW0d approximation, fre-
quently used in the analysis of experimental scattering data.
The W0 approximation avoids the problem of solving the OZ
equations, but is largely inaccurate except, perhaps, at ex-
tremely low densities. We then consider the first-order per-
turbative correctionsW1 approximationd f4g

gijsrd = expf− bfi jsrd + vi j
s1dsrdrg. s13d

By construction, this expression is never negative, thus over-
coming the major drawback of MSA. The explicit expression
of vi j

s1dsrd reads

vi j
s1dsrd = o

k

xkgi j ,k
s1d srd = o

k

xkE dr 8f iksr8dfkjsur − r 8ud.

s14d

The evaluation of the convolution integralgi j ,k
s1d srd is most

easily carried out in bipolar coordinates. After an integration
over angle variablesgi j ,k

s1d srd reduces to

gi j ,k
s1d srd =

2p

r
E

0

`

dxfxfiksxdgE
ux−r u

x+r

dyfyfkjsydg. s15d

Of course, the use of the W1 approximation is not re-
stricted to the model of this paper, and the proposed calcu-
lation scheme can be equally well applied to different spheri-
cally symmetric potentials. While it was shown in Ref.f4g
how this first-order correction largely improves the fit of ex-
perimental scattering data, over the W0 one and under those
experimental conditions, little could be said on the limits of
validity of the W1 approximation with respect to anshypo-
theticald exact calculation. This is the reason why we tackle
this task here by a comparison with MC simulations for a
binary HS-Yukawa-DLVO system.
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IV. MC SIMULATIONS AND EWALD SUM FOR YUKAWA
FLUIDS

The difficulties involved in Monte Carlo calculations
dealing with pure Coulomb potentials are well knownf23g. It
is now widely appreciated the usefulness of the so-called
Ewald sum for long-range electrostatic interactionsf10,23g.
On the other hand, a similar construction for Yukawa poten-
tials has appeared in the literature quite recentlyf11,12g. We
now briefly recall the procedure detailed in Refs.f11,12g. In
order to keep notation as simple as possible, we shall restrict
ourselves to simple Yukawa potentials, the extension to our
actual potentialfEqs.s1d–s3dg being obvious. The basic idea
is to start with the total potential energy

U =
1

2 o
ab=1

N

qaqb

e−kDrab

rab

, s16d

whereN is the total number of macroparticles,rab= ur a−r bu,
andqa=Zae, qb=Zbe are the charges. This term is then split
into a sum of two contributions, one evaluated in real space,
while the other is calculated in momentum space on wave
vectors given byk =2pn /V1/3 sV is the volume of the system
and n a unit vector of integer componentsd. To this aim an
auxiliary continuous Gaussian charge distribution

rqsrd = Sl2

p
D3/2

e−l2r2
s17d

is exploited. Forl values such that the real-space contribu-
tion is limited to particles in the basic simulation cell, the
final result reads

U =
1

2 o
ab=1

N

8qaqb

3
erfcslrab + kD/2ldekDrab + erfcslrab − kD/2lde−kDrab

2rab

+ o
ab=1

N
1

Vo
k

qaqb

4p

k2 + kD
2 expS− sk2 + kD

2d
4l2 D

3cosskab · r abd + o
a

qa
2F−

2l

Îp
expS− kD

2

4l2 D
+ kD erfcSkD

2l
DG , s18d

where in the first sum we exclude the terms with equal indi-
ces and we have introduced the complementary error func-
tion

erfcsxd =
2

Îp
E

x

+`

dz e−z2
. s19d

The first two terms in Eq.s18d represent the real- and
momentum-space summations, respectively, while the last
two contributions refer to the self-energyf11,12g. In the limit
kD→0, the above equation reduces to the Coulomb case
f23g, as it should. Equations18d containsl as an adjustable
parameter, and we have performed a detailed analysis for its

optimal choice, so that the original potentials16d is recov-
ered for the range ofkD values of interest under the experi-
mental conditions of Ref.f4g, without using too many terms
in the reciprocal-space summation. Our results indicatel
,6.5/L swith L being the side length of the cubic simulation
boxd to be the optimal choice, which is of the same order of
magnitude of the one typically used in the Coulomb case.

V. INTEGRAL EQUATIONS

Our next task is to test the performance of some IE’s
under the experimental conditions of Ref.f4g. This will
strengthen the usefulness of the W1 approximation, in view
of its simplicity compared to a typical IE calculation for a
binary mixture. The OZ IE’s of the liquid state theory for
p-component mixtures with spherically symmetric interac-
tions readf7g

hijsrd = cijsrd + ro
l=1

p

xl E dr 8 cilsr8dhljsur − r 8ud, s20d

and their solution can be accomplished only in the presence
of an additional approximate relationsclosured between the
direct correlation functionsDCFd cijsrd and the total correla-
tion functionhijsrd=gijsrd−1 sp=2 in the present cased. The
most known among these approximations aref7g s1d the
Percus-YevicksPYd closure

cijsrd = fe−bfi j srd − 1gf1 + gi jsrdg, s21d

wheregi jsrd=hijsrd−cijsrd, s2d the hypernetted chainsHNCd
closure

cijsrd = e−bfi j srd+gi j srd − 1 −gi jsrd, s22d

ands3d the MSA, much simpler than the above two, with the
DCF being related only to the potential outside the core

cijsrd = − bfi jsrd r ù si j , s23d

complemented by the condition of excluded volume,gijsrd
=0 inside the hard cores.

Other possible more refined closures, which can be re-
garded as a combination of the above three, will be also
briefly addressed in this work.

VI. NUMERICAL RESULTS

A bLG monomer is composed of 162 amino acid resi-
dues; 20 of these are basic, so that atpH=2.3 the monomer
is expected to be positively charged, with about 20 proton
charges. In our calculations we fix all parameters close to
their best-fit “experimental” valuesf4g, s1=40 Å, s2
=21/3s1.50.40 Å, Z1=20, Z2=40, T=298.15 K, and «
=78.5 sstrictly speaking, in Ref. f4g, T=293.15, s1
=38.30 Å, and the ratioZ2/Z1 was about 1.8, since 2 of the
20 amino acids of the monomer are at the monomer-
monomer interface in the dimerd.

The packing fractionh=0.01 is also very close to that
determined from the experimental protein concentrationsh
=0.0096d f4g. We then vary the dimensionless screening pa-
rameterz=kDs1 in the rangez,1–10, roughly equivalent
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to the range of ionic strengthIs sfrom 7 to 507 mMd exam-
ined in the aforesaid SAS measurements forbLG f4,5g
fwherez=1.41 whenIs=7 mM sweak screening, monomer
molar fraction x1=0.85d and z=9.08 when Is=507 mM
sstrong screening,x1=0.05dg. Note that an increase ofz has
the effect of reducing not only the range of the HS-Yukawa-
DLVO potentials but also their amplitudes, as described by
Eq. s3d.

In order to obtain the W1 approximation to the RDF’s, we
have evaluated all the convolution termsgi j ,k

s1d srd, given by
Eq. s15d, at the grid pointsr i = iDr si =1, . . . ,500d, with Dr
=1 A. At each r i value, the double integral, Eq.s15d, has
been carried out numerically by using the trapezoidal rule for
both x and y integrations. For thex integration, we have
chosen as upper limit the valuexmax=maxsxcut,s2+rd, with
xcut=s2+12/kD, and as grid sizeDx=xcut/400. For they
integration,Dy=Dx.

The MC simulations have been performed at constant
N,V,T, with and without the Ewald procedure for a correct
treatment of the long-range electrostatic interactions. Most
calculations refer to a total number of particlesN=216, di-
vided in monomers and dimers according to the fixed mono-
mer molar fractionx1. Although the sample size may seem
rather small with respect to present-day standards, one has to
take into account that the Ewald construction takes a great
computational effort with increasingN. In any case, we have
carried out some additional calculations with a larger number
of particles in order to check for possible finite-size effects
and found no significant differences in the results. Hence, we
shall use this value ofN throughout, with one exception
which will be described later on. The simulation starts from
an appropriate lattice distribution of molecules. We have
typically employed 105 equilibration steps to eliminate any
memory of the initial configuration artificially introduced
into the fluid. Then 53105 additional steps have been used
to collect sufficient information for the statistical averages
required to calculate the RDF’s.

With the same parameters we have also solved the OZ
integral equations numerically, by means of an efficient al-
gorithm proposed by Labiket al. f24g employing 1024 grid
points, with a mesh sizeDr =0.01s1, and 20 basis functions.
The PY, HNC, and MSA closures have been employed. As
expected, the MSA resultssnot shown in our figuresd poorly
describe the MC data and exhibit the above-mentioned draw-
backs of the MSA closure in regimes with strong coupling at
high dilution f16g. We have explicitly checked that other,
more sophisticated, approximations, such as the Rogers-
Young sRYd closuref25g or the Zerah-HansensHMSAd one
f26g, which attempt to achieve thermodynamic consistency
of compressibility and virial pressures by interpolating be-
tween two of the above closuressPY-HNC and MSA-HNC,
respectivelyd, are of no use here and such a thermodynamic
consistency is never achieved, presumably because of the
combined effect of low densities and strong long-range re-
pulsionsf27g.

Finally, both MC and IE calculations forgijsrd have been
compared with the corresponding results from the first-order
W1 approximation, with the aim to assess the limits of va-
lidity where the expression given by Eq.s13d can be safely

exploited, under conditions typical of proteins in solution. As
further elaborated below, we find that for valuesz*2 si.e.,
kD

−1&s1/2d the W1 approximation well describes the behav-
ior of the RDF’s.

When z is largesin the rangez,5–10d the Yukawa in-
teractions are strongly screened, and the RDF’s essentially
reduce to the typical HS ones, with the first maximum cor-
responding to the contact distancesi j .

Figure 1 depicts the comparison between the MC results
and the W1 approximation forz=3 scorresponding to a mod-
erately weak screeningd and x1=0.5, which is when both
monomers and dimers are present in equal measure. Note
that these conditions are close to one of the experimental
cases reported in Ref.f4g, whereIs=47 mM corresponds to
z=2.8 andx1=0.48. On the other hand, as the ionic strength
Is is lowered from 507 mM to 7 mM, the experimental sys-
tem switches from a fluid almost completely made up of
dimers sx1=0.05d to one almost completely made up of
monomerssx1=0.85d. This rather peculiar feature is specific
to the bLG and will also be considered further on. Here,
however, our main aim is to test the W1 approximation under
the simple, symmetric, condition of equal molar fractions,
since we already know, from Ref.f4g, that the first-order
approximation well describes thebLG experimental data,
which display, in particular, a lowering in the scattering in-
tensity at small angles, with a progressive development of an
interference peak at low ionic strengths. In Fig. 1 we also
report the results from the HNC and PY IE’sssolid and dot-
ted linesd, which are practically indistinguishable on the em-
ployed scale. It is apparent that in the case of Fig. 1 the
W1-RDF’s g11srd, g12srd, and g22srd are in excellent agree-
ment with their MC, HNC, and PY counterparts. Note that,
for all three RDF’s,gijsrd remains zero even in a region
outside the hard core, while the position of the peak lies at a
distance larger thansi j , as a consequence of the strong
Yukawa repulsions.

FIG. 1. Partial correlation functionsg11srd, g12srd, andg22srd sin
order from bottom to topd as a function of the rescaled distance
r /s1 for z=3 andx1=0.5. Circles correspond to MC calculations,
solid lines to HNC, dotted lines to PY, and dashed lines to the
first-order W1 approximation. Here and in the following the com-
ponents 12 and 22 have been shifted upwards by one and two units,
respectively.
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A departure of the first-order W1 approximation from the
MC results can be observed for smaller values of the screen-
ing parameterz, where higher-order terms in the density ex-
pansion ofWijsrd, Eq. s10d, begin to have a non-negligible
effect. This is indicated in Fig. 2 for the casez=2, which
corresponds tokD

−1=s1/2, with the Debye screening length
being equal to the monomer radiussamong the experimental
data of Ref.f4g we findz=2 andx1=0.73 whenIs=17 mMd.
Again the HNC and PY RDF’s are nearly identical with each
other and with MC data. On the other hand, the W1 approxi-
mation predicts peaks nearly at the same positions as the PY
and HNC closures, while its peak heights are slightly over-
estimated. However, the agreement between W1 and MC re-
sults can still be regarded as rather good.

In regimes with weaker screening the discrepancies be-
come more and more pronounced. The breakdown of all the
considered approximations can be clearly appreciated in Fig.
3 for z=1 snote that the case with the weakest screening in
Ref. f4g corresponds toIs=7 mM, z=1.41, andx1=0.85d.
The W1 results are not reported in this figure, since they are

way off from the MC dataswith an overestimation of about a
factor of 2d. On the other hand, even the results from the PY
approximation are significantly displaced from the MC
RDF’s. The difference between the HNC and PY results is
apparent, particularly for the latter, as expected. The PY ap-
proximation overestimates both the heights and positions of
the peaks, compared to the HNC ones. Overall the PY ap-
proximation fails to describe the MC calculation forz,2,
whereas the HNC closure is consistently in good agreement
with the MC data. Such a good performance of the HNC
closure closely resembles the good agreement between HNC
and MC, even at strong Coulomb coupling, for theone-
componentfluid of point chargesselectron gas or plasma,
with z=0d sOCPd in a uniform neutralizing backgroundf28g.
However, the results for our binary model with screening at
packing fractionh=0.01 can hardly be compared with the
available MC simulations forone-componentcharged hard
spheressOCCS, withz=0d in a uniform neutralizing back-
ground, ath=0.3–0.4f29g. Moreover, it is known the inad-
equacy of the HNC for high charges at low concentrations
sfor instance, in the dilute regime of 2-2 aqueous electrolytes
f30,31g, where bridge diagrams become non-negligible for
like-charge RDF’sd. On the other hand, despite the large
number of comparisons among PY, HNC, and MC predic-
tions carried out over the years, we are not aware of a similar
detailed RDF investigation under regimes characteristic of
globular proteins in solution, for HS-Yukawa-DLVO binary
models.

Next we consider the effect of taking into proper account
the long-range nature of the interactionssin the weakly
screened cased with the use of the Ewald construction. This
is illustrated in Figs. 4 and 5, where the RDF’s computed
with and without the Ewald construction are compared atz
=1 andz=0.25, respectively. Clearly, very little difference is
detected between these two calculations whenz=1 sand
whenz=0.5, not shownd. We find that the the presence of the
Ewald construction begins to be important for very low val-
ues of the screening parametersz&0.25—i.e.,kD

−1*4s1d, as
shown in Fig. 5. Supplementary calculations, not reported

FIG. 2. Same as above withz=2 andx1=0.5.

FIG. 3. Comparison of the results from HNC, PY, and MC in the
calculation of the partial radial distributions functions forz=1 and
x1=0.5. The first-order W1 approximation is not depicted as it over-
shoots the MC results roughly by a factor of 2.

FIG. 4. Partial correlation functionsg11srd, g12srd, andg22srd sin
order from bottom to topd as a function of the rescaled distance
r /s1, as computed withscirclesd and withoutssolid lined the Ed-
wald construction, forz=1 andx1=0.5.
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here, confirm that this is true even for lower values of protein
charges—that is, for weaker Coulomb coupling.

Finally, we consider the effect of varying the molar frac-
tions. While the exact conditions reported in thebLG experi-
ment pose a very difficult challenge to an accurate MC cal-
culation in view of the particular combination of strong
asymmetry and repulsions, we can nevertheless easily ac-
count for the general trend. This is depicted in Fig. 6, where
we have assumedz=2 andx1=0.75, in closer analogy with a
bLG experimental case,z=2 and x1=0.73, when Is
=17 mM. It is apparent how the performance of the first-
order W1 approximation is comparable to the corresponding
symmetric case,z=2 andx1=0.5.

Figure 7 refers to the asymmetric case with the weakest
screening in Ref.f4g—i.e.,z=1.41 andx1=0.85scorrespond-
ing to the lowest value of ionic strength,Is=7 mMd. Again,
the HNC and PY results are in good agreement with the MC
ones, and even the performance of the W1 approximation
can be regarded as acceptable, in agreement with the results
of Ref. f4g. We note that, in view of the low molar fraction of

species 2sdimersd, the results of Fig. 7 refer to a higher
number of particlessN=512d.

VII. CONCLUSIVE REMARKS

This work represents a necessary verification of the best-
fit analysis of SAS experimental data, for solutions of
b-lactoglobulin, presented in Ref.f4g. In the present paper
we have assessed the limits of validity of the W1 approxi-
mation, exploited in that work to calculate, in a simple way,
the RDF’s in regimes typical of a large class of globular
proteins in solution—that is, low concentrations and high
macroion charges. This task has been accomplished by con-
sidering thesamehighly simplified model proposed in Ref.
f4g si.e., a binary mixture of monomers and dimers of the
protein, with HS-Yukawa-DLVO effective potentialsd and
comparing the correspondinggijsrd obtained by three differ-
ent methods: the first-order density expansion of the poten-
tial of mean forcesW1 approximationd, “exact” MC simula-
tions, and approximate IE’s. All results reported here refer to
h=0.01 and high macroion charges,Z1=20 andZ2=40. For
the MC simulations we have implemented an Ewald con-
struction for Yukawa potentials, which ensures a proper treat-
ment of the long-range part of the interactions, and we have
tested its relevance as a function of the screening parameter
z. In the IE calculations simple closuressPY, HNC, and
MSAd as well as more elaborated onessRY and HMSAd
have been considered.

We can summarize the obtained results as follows.
sid The first-order W1 approximation can be considered

reliable in regimes with low concentrationsh=0.01d even for
strong Coulomb couplingfup to charges ofs10–20de on
macroions with diameters of 40–50 Åg, provided that the
screening is strong enough—i.e., whenz*2 or, equivalently,
kD

−1&s1/2 sDebye length smaller than monomer radiusd.
This finding demonstrates that the previous usage of the W1
approximation in Ref.f4g was fully legitimate, for all con-
sidered cases including those with the lowest ionic strength
sIs=7 mM, x1=0.85,z=1.41d, which lies near the borderline

FIG. 5. Same as above withz=0.25 andx1=0.5. Note that the
scale has been changed with respect to previous figures. Accord-
ingly, here components 12 and 22 have been shifted upward by two
and four units, respectively.

FIG. 6. Asymmetric case, corresponding to Fig. 2, withz=2 and
x1=0.75.

FIG. 7. Asymmetric case withz=1.41 andx1=0.85, correspond-
ing to the lowest value of ionic strengthIs=7 mM si.e., the weakest
screeningd investigated in Ref.f4g.
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of the reliability region. For weaker screeningslower values
of z or largerkD

−1d at least second-order terms in the density
expansion should be taken into account. However, the result-
ing W2 approximation would require a much higher compu-
tational effort and thus could not be conveniently included
into a best-fit program for analyzing SAS experimental data.

sii d In the MC simulations the Ewald construction for
Yukawa potentials starts to be important for weak screening
corresponding toz&0.25 skD

−1*4s1d, and this is true even
for lower values of the protein charges.

siii d Both the HNC and PY IE’s yield sufficiently accurate
values of the RDF’s, as long asz*2. For lower values ofz
HNC is still accurate, whereas PY starts to deviate as ex-
pected. The MSA predictions, on the other hand, are very
poor even in those regimes where the W1 approximation can
be considered reliable. Under these conditions both the RY
and HMSA closures are found not to achieve thermodynamic
consistency between compressibility and virial pressures.

sivd The sufficient accuracy of the W1 approximation in
the regimes of our intereststested in this paper against “ex-
act” MC resultsd, together with its successsshown in Ref.
f4gd in reproducing the main features of the experimental
SAS intensity curves for the examinedbLG solutions, con-
firms the good performance of the highly idealized two-
macroion model, which includes spherically symmetric HS-
Yukawa-DLVO repulsions, a monomer-dimer chemical
equilibrium, and the “exact” form factors, evaluated by tak-
ing into account the real nonspherical structure of the dimer.

Clearly, all complex characteristics of the interactions be-
tween globular proteins cannot be explained by the “primi-
tive” level of description adopted in Ref.f4g and here. We
have followed the generally accepted philosophy of exploit-
ing the simplest possible description of the system, which yet
can provide useful information on the basic underlying inter-
action mechanism. The determination of the “true” protein-
protein potentials thus remains an open problem.

Our choice ofpurely repulsiveinteractions illustrates the
minimal assumptions allowing a satisfactory reproduction of
the SAS data forbLG. In many studies on colloidal or pro-
tein solutions, satisfactory results were obtained from very
simplified models. The use of sophisticated potentials, with a
large number of different contributions, is often unnecessary
at the first stages. Moreover, a high level of description for
potentials would be in striking contrast with the poor level of
approximation to the RDF’ssW0 approximationd commonly
adopted in many analyses of experimental data.

As regards the approximation ofspherical symmetry, used
for the protein-protein interactionssbut not in the calculation

of the form factorsd, we remark that it represents a common
simplifying choice. In particular, it is worth recalling a very
recent study by Pellicaneet al. f32g, which reports evidence
that the phase diagram of prototype globular protein solu-
tions slysozyme andg-crystallin in water and added saltd can
be reasonably reproduced by a spherically symmetric repre-
sentation of macromolecular interactions. These authors em-
ployed a HS-Yukawa-DLVO one-component potential, in-
cluding the Hamaker attractive part.

Evidently, in addition to the molecular granularity of the
solvent and the finite sizes of all microions, a highly refined
model description of protein solutions should embody the
asymmetry of the molecular shape as well as the heteroge-
neity of the macroion surface charge distribution. The pres-
ence of different charged surface groups may produce
“charge patches” that have a sign opposite to that of the net
macroion charge. The importance of non-spherically-
symmetric models with an inhomogeneous distribution of
positively and negatively charged groups was recently inves-
tigated in a MC study of the electrostatic complexation of
flexible polyelectrolytes with a-lactalbumin and
b-lactoglobulinf33g.

As a final remark to the present paper, it is worth pointing
out that we are not aware of any previous investigations of
this type within the HS-Yukawa-DLVO binary model and in
regimes typical of globular proteins in solution. Our results
and the methodological approach based upon the W1 ap-
proximation are expected to be useful in the analysis of SAS
experiments. It would be rather interesting to pursue a simi-
lar study on the thermodynamic predictions of the first-order
approximation. This could be easily carried out, as all ther-
modynamic quantities can be inferred either directly or
through knowledge of the RDF’s. Another interesting issue,
within the present framework, involves an increase of the
asymmetry between the two considered molecular sizes,
which is known to lead to possible depletion effectsf34g. We
plan to perform such investigations in a future publication.
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